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Outline
® Overview
® Flavors of RIXS

® OCEAN Approach
® Missing from OCEAN



Resonant Inelastic X-ray Scattering

Kotani & Shin, Rev. Mod. Phys. 73, 203 ( 2001)
Ament, et al., Rev. Mod. Phys. 83, 705 (2011)

Resonant: Incident photon is tuned to an edge
Inelastic: Energy loss
Scattering: Photon in — photon out



Electron-photon interactions
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p is the electron momentum
A is the photon vector potential
e & m are the electrons charge and mass



Electron-photon interactions
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H, absorption or emission
H, NRIXS (or Thompson scattering)
H,/H, = /2



Scattering

® Photon-in — photon out
e A’ or successive p-A terms (same order)
e Kramers-Heisenberg expansion
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Scattering
* Dropping the A% term \

RIXS Anomalous
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Scattering
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e Resonant energy denominator



Scattering
Dropping the A% term
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Outline

Overview

Flavors of RIXS

e Core-to-core

e Direct

e Indirect

e Core-hole clock emission

OCEAN Approach



Core-to-core RIXS

Core-to-core
e 1s2p, 1s3p, etc.
e Large energy transfer
Primarily used as x-ray absorption stand-in
e K. Hdmalainen et al., Phys. Rev. Lett. 67, 2850 (1991)
e Constant loss mimics XAS
e Lower intrinsic core-hole broadening



Core-to-core RIXS

® Primarily used as x-ray absorption stand-in

* Modeling

e Just run absorption
e Full RIXS
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Agrestini et al., Phys. Rev. B 95, 205123 (2017)



Valence RIXS

Emitted photon nearly the same energy as absorbed
e No core-level hole in final state

Two types
e Direct
e Indirect



Valence RIXS: Direct

® X-ray in — X-ray out
* Probes low-energy band structure \.\-/
® Couples to secondary excitations s

e phonons :

® magnons
e spin-density waves




Valence RIXS: Indirect

® X-ray in — X-ray out

*_Probeslow-energy band structure \/./

® Couples to secondary excitations

e phonons E
® magnons /“O\

e spin-density waves




Valence RIXS

Two types
e Direct
e Indirect
How do you choose?
e Experiment segregates by energy

e Direct RIXS has electron-hole pair
e Loss = band gap
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Ament et al., Rev. Mod. Phys. 83, 705 (2011)



Indirect RIXS

Core-hole excitation creates local perturbation

Leads to secondary excitations
e Charge-transfer

o d-d*

e Phonons



Indirect RIXS

Core-hole excitation creates local perturbation
Leads to secondary excitations

e Charge-transfer
o d-d* Is
e Phonons

Ament et al., Rev. Mod. Phys. 83, 705 (2011)






OCEAN RIXS

® Valence, direct RIXS
® Core-to-core is in development



OCEAN RIXS

Start with cross-section
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Two classes of excitonic states

e m have a core hole

e f have a valence-band hole

OCEAN does both core and valence BSE
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OCEAN RIXS
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Excitons have complex energy
e Primarily driven by core-hole lifetime
e Conveniently avoids divergences

Start with the core-level exciton




OCEAN RIXS
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Don’t need intermediate eigenstates |1m)
e Need the sum of “all” of them
* Projected onto by d,
e Weighted by resonant energy denominator




OCEAN RIXS
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T ;

Don’t need intermediate eigenstates |m,)

|II

e Need the sum of “all” of them
* Projected onto by d,

e Weighted by resonant energy denominator

Instead replace with Hamiltonian




OCEAN RIXS
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Don’t need intermediate eigenstates |m,)
e Need the sum of “all” of them

Instead replace with Hamiltonian
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OCEAN RIXS
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Approximate the Hamiltonian using the BSE

e Set E; = 0; Explicit core-hole broadening
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OCEAN RIXS
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Approximate the Hamiltonian using the BSE
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e Set E; = 0; Explicit core-hole broadening
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OCEAN RIXS

Ax = b

Use GMRES (Generalized Minimal Residual Method)
e Y. Saad and M.H. Schultz, SIAM J. Sci. Stat. Comput., 7, 856 (1986)
e Core-hole broadening

« Needed for stability (finite precession math)
« Physically motivated
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OCEAN RIXS
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Eliminate sum over final states with Green’s function
Use valence level BSE solver to obtain final state spectrum

electron in conduction band
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hole is valence band



Limitations of OCEAN (BSE)

Single electron-hole excitation

e Only partial multiplet effects

e Poor for localized open d- and f-shells
Core-hole screening is static

e No secondary excitations

e No magnons, d-d*

e No phonon response

OCEAN is limited to direct RIXS






