

Screening and Chemical Shifts

OCEAN Tutorial, Session 2

Screening and Chemical Shifts

- What is screening?
- Converging the screening in OCEAN
- Chemical shifts

But first, get the example running

- We'll be looking at NH_4NO_3
 - (Not the room-temperature phase)
- Go back to your directory in scratch

1. `> cd /hpcgpfs01/scratch/jtv3`
 - but your username, not mine!
2. `> cp -r /hpcgpfs01/work/workshop/ocean_tutorial/session2 .`
 - (try hitting the tab key after you've typed a few letters)
3. `> sbatch runit`

Screening in the Bethe-Salpeter Eqn.

- Two interaction terms in the BSE
 1. Bare exchange
 - Repulsive
 - Mixes L_2/L_3 and t_{2g}/e_g ratios
 2. Screened direct
 - Responsible for exciton binding
 - Screened by the electrons

1. `> cd /hpcgpfs01/scratch/jtv3`
2. `> cp -r /hpcgpfs01/work/workshop/ocean_tutorial/session2 .`
3. `> sbatch runit`

Screening

- System
 - Electrons and ions in the ground state
 - Excited electron and hole
- Electrons and ions will react to external potentials
 - (In this case the presence of the electron or hole)
 - Reaction is frequency dependent
 - Too fast for ions
 - Charge density changes
 - $\chi = \delta n / \delta v_{\text{ext}}$

Major Approximations

- Random Phase Approximation (RPA)
 - $\chi_0(1, 2) = -iG_0(1, 2)G_0(2, 1^+)$

Major Approximations

- Random Phase Approximation (RPA)
- Static Screening

Static screening

- Dielectric response should be frequency dependent
- Important energy scales for ϵ^{-1}
 - Band gap
 - Plasmon energy
- Energy scale for exciton is pair binding energy
 - Difference between interacting and non-interacting
 - Not the core-level binding
 - Not the excitation energy above the edge
- Strinati PRL **49**, 1519 (1982); PRB **29**, 5718 (1984)

Static screening

- Core and valence BSE both use static screening
 - Few exceptions in literature
- Exciton binding tends to be smaller than band gap

OCEAN methodology

Eric Shirley, Ultramicroscopy **106**, 986 (2006)

OCEAN methodology

- Screening with OCEAN:
 - Generate DFT orbitals
 - Short-range – long-range partition

Eric Shirley, Ultramicroscopy **106**, 986 (2006)

DFT orbitals

- $\chi_0(1, 2) = -iG_0(1, 2)G_0(2, 1^+)$

$$G_0(E) = \sum_{n\mathbf{k}} \frac{\psi_{n\mathbf{k}}^\dagger \psi_{n\mathbf{k}}}{E - \varepsilon_{n\mathbf{k}} \pm i\eta}$$

- Get our orbitals from DFT
- Sum over bands and k-points
 - Use finite number of both
 - Convergence covered later

Dividing the screening problem

- Linear superposition
 - Can break problem into pieces
- Step 1 is core-valence partition
 - Core electrons will screen core hole
 - Core orbitals not available from DFT calculation
 - Use atomic DFT program
 - Allow spectator core orbitals to relax: $V_C(\mathbf{r})$
 - Ex. Ti 1s hole will be screened by 2s & 2p core-level orbitals

Short/long-range partitioning

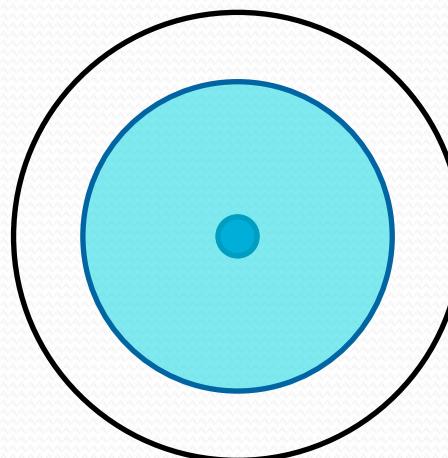
- Need valence response to core-screened potential $V_C(\mathbf{r})$
- Use linear superposition
 - $V_C(\mathbf{r}) = V_1(\mathbf{r}) + V_2(\mathbf{r})$
- Place a neutralizing shell at R
 - $V_1(\mathbf{r}) = V_C(\mathbf{r}) - \Theta(R - r)/R - \Theta(r - R)/r$
 - $V_2(\mathbf{r}) = \Theta(R - r)/R + \Theta(r - R)/r$

Short/long-range partitioning

- $V_1(\mathbf{r}) = V_C(\mathbf{r}) - \Theta(R - r)/R - \Theta(r - R)/r$
 - V_1 is zero outside of R

Short/long-range partitioning

- $V_1(\mathbf{r}) = V_C(\mathbf{r}) - \Theta(R - r)/R - \Theta(r - R)/r$
 - V_1 is zero outside of R
 - Only need screening for inside sphere s ; $s > R$



Short/long-range partitioning

- $V_1(\mathbf{r}) = V_C(\mathbf{r}) - \Theta(R - r)/R - \Theta(r - R)/r$
 - V_1 is zero outside of R
 - Only need screening for inside sphere s ; $s > R$
- $V_2(\mathbf{r}) = \Theta(R - r)/R + \Theta(r - R)/r$
 - V_2 has infinite extent

Short/long-range partitioning

- $V_1(\mathbf{r}) = V_C(\mathbf{r}) - \Theta(R - r)/R - \Theta(r - R)/r$
 - V_1 is zero outside of R
 - Only need screening for inside sphere s ; $s > R$
- $V_2(\mathbf{r}) = \Theta(R - r)/R + \Theta(r - R)/r$
 - V_2 has infinite extent
 - Constant and small ($1/R$) inside R
 - Exciton is strongly localized

Short/long-range partitioning

- $V_1(\mathbf{r}) = V_C(\mathbf{r}) - \Theta(R - r)/R - \Theta(r - R)/r$
 - V_1 is zero outside of R
 - Only need screening for inside sphere s ; $s > R$
 - Use RPA for space within sphere s
- $V_2(\mathbf{r}) = \Theta(R - r)/R + \Theta(r - R)/r$
 - V_2 has infinite extent
 - Constant and small ($1/R$) inside R
 - Exciton is strongly localized
 - Use model screening

Short/long-range partitioning

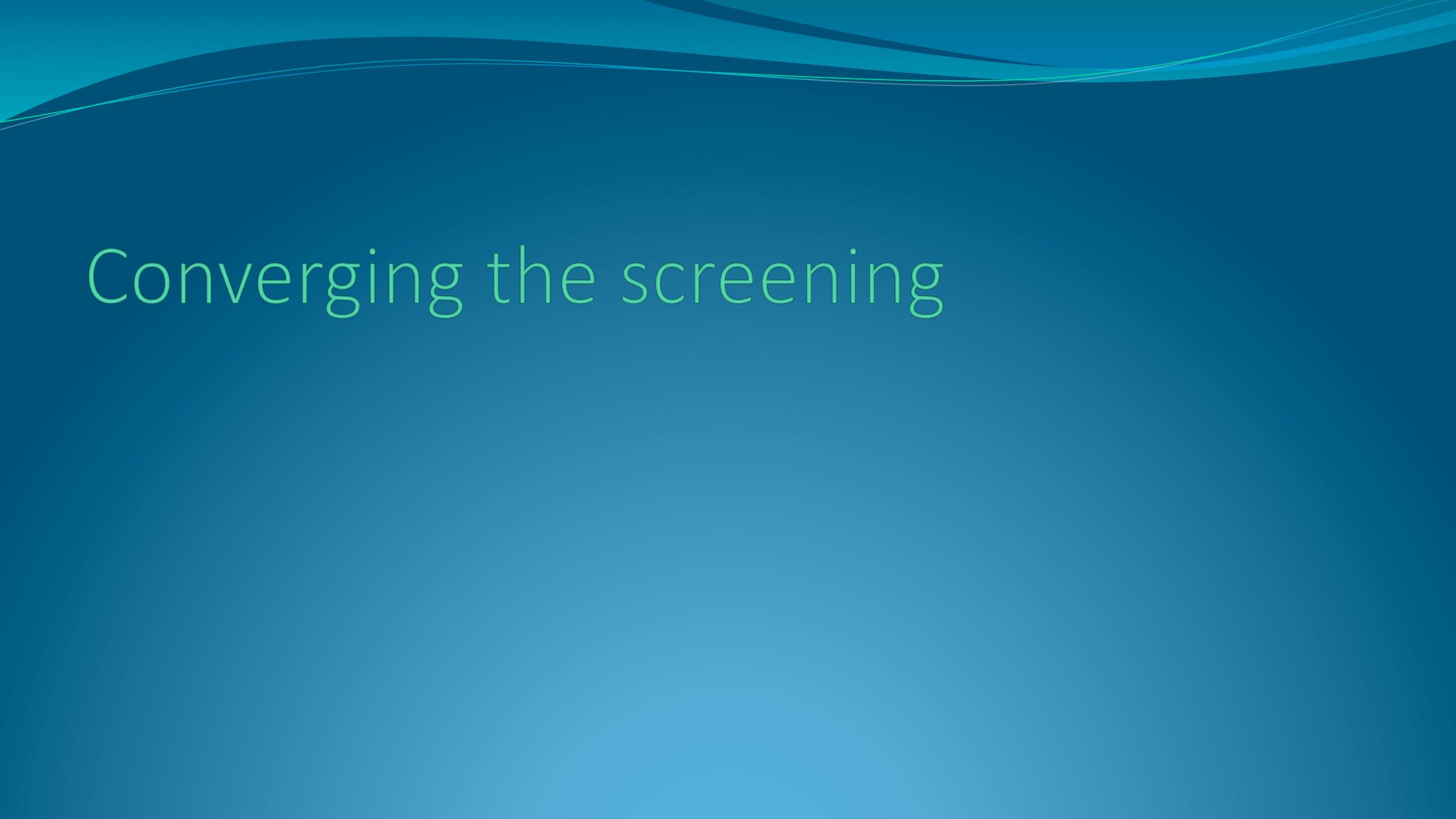
- Use of model
 - Exciton is localized where V_2 is small: $V_2(\mathbf{r}) \approx 1/R$
 - Controllable parameter R
 - Long-ranged behavior of screening is simple: ϵ_0^{-1}/r
- Model derived from Levine-Louie dielectric function
 - Z.H. Levine & S.G. Louie, Phys. Rev. B **25**, 6310 (1982)
 - E.L. Shirley, Ultramicroscopy **106**, 986 (2006)

Short/long-range partitioning

- Typical R is 3.5 – 5.5 Bohr
 - This is screen.shells { }
 - Also cnbse.rad { }
 - Can run many screen.shells, choose a single one for
- Typical s is 8 Bohr
 - Need $\chi [G(r,r')]$ within the sphere s

Results

- r_{opt} – the screening potential from the valence
 - Column 1: radius
 - Column 2: V_2 (modeled screened potential of shell)
 - Column 3: V_1 (RPA screened hole – shell)
 - Column 4: $V_1 + V_2$
- r_{pot} – the total, screened, core-hole potential
- SCREEN/zF_0001/n01l00/
 - Element & index
 - Principle and angular quantum numbers of edge



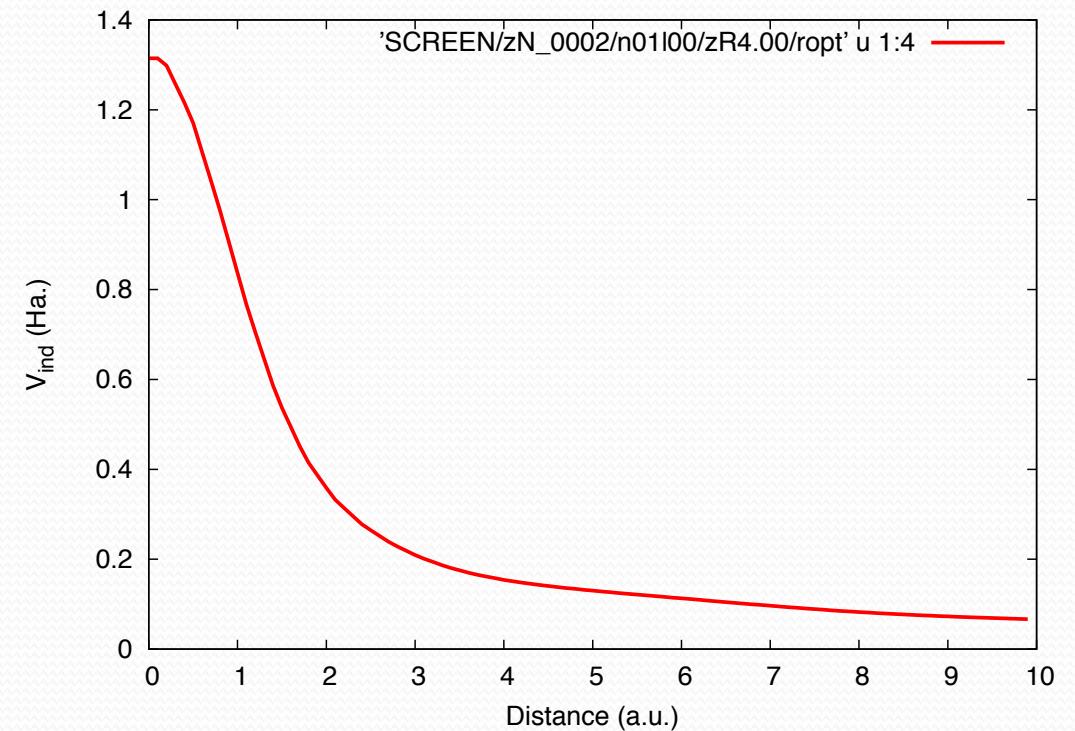
Converging the screening

Converging the screening

- Defaults are pretty good
- Look at changes to ropt
- Things to check
 - 1) Number of bands (and sometimes k-points)
 - 2) R – the shell radius for the local RPA

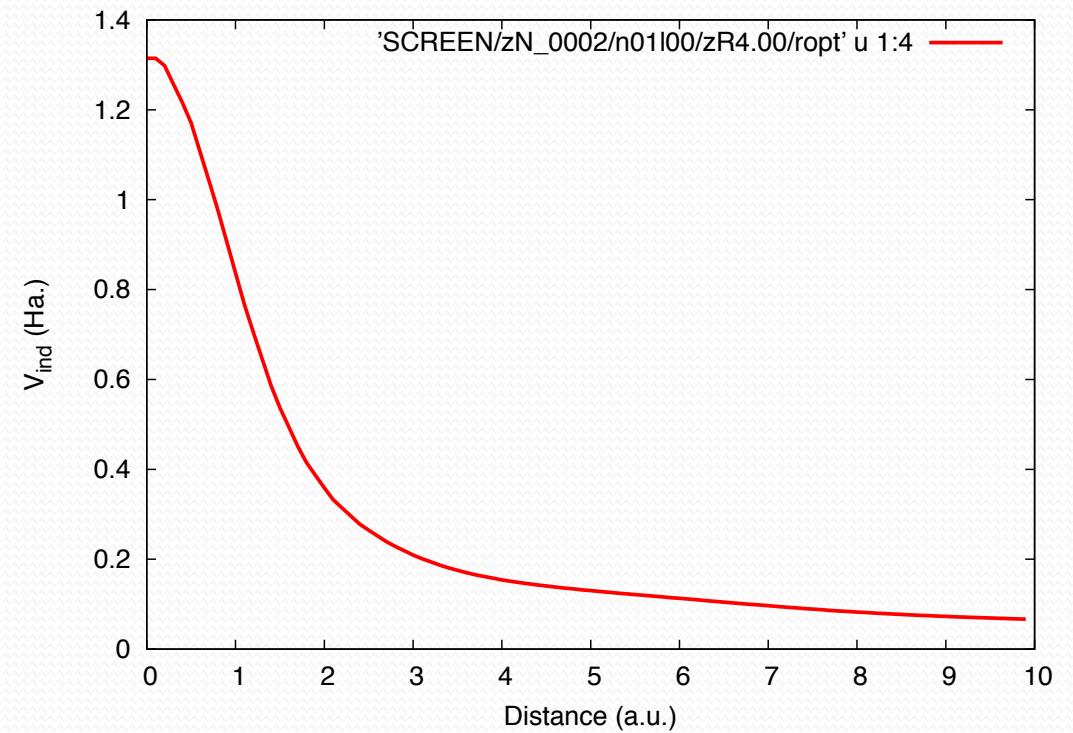
Plot the screening potential

- Screening is in SCREEN
- Each atomic site gets a directory
 - `zN_0001` & `zN_0002`
 - The NO_3 nitrogen is the 2nd
- Separated by core level
 - $n01l00 = 1s$ ($n02l01 = 2p$)
- Separated by short/long partition
 - $zR4.00 = 4$ Bohr



Plot the screening potential

- p 'SCREEN/zN_0002/n01l00/zR4.00/ropt' u 1:4
 - 1: the radial grid
 - 2: long-range model
 - 3: short-range RPA
 - 4: total



Converge the screening

- Start the next run, then explain
- Save both screening and spectra
 - > mv SCREEN SCREEN.1
 - > mv CNBSE CNBSE.1
- Edit AN.in
 - screen.nbands 200
- > sbatch runit

Converging the screening

$$\chi_0(1, 2) = -iG_0(1, 2)G_0(2, 1^+)$$

$$G_0(E) = \sum_{n\mathbf{k}} \frac{\psi_{n\mathbf{k}}^\dagger \psi_{n\mathbf{k}}}{E - \varepsilon_{n\mathbf{k}} \pm i\eta}$$

- Use finite number of bands and k-points
- Remarkably few k-points
 - 2x2x2 grid works for most systems
 - More for metals, very small unit cells
 - Advantage of local approach
 - screen.nkpt { }

Converging the screening

$$\chi_0(1, 2) = -iG_0(1, 2)G_0(2, 1^+)$$

$$G_0(E) = \sum_{n\mathbf{k}} \frac{\psi_{n\mathbf{k}}^\dagger \psi_{n\mathbf{k}}}{E - \varepsilon_{n\mathbf{k}} \pm i\eta}$$

- Use finite number of bands and k-points
- Remarkably few k-points
- Aim for about 100 eV worth of bands
 - screen.nbands

Converging the screening

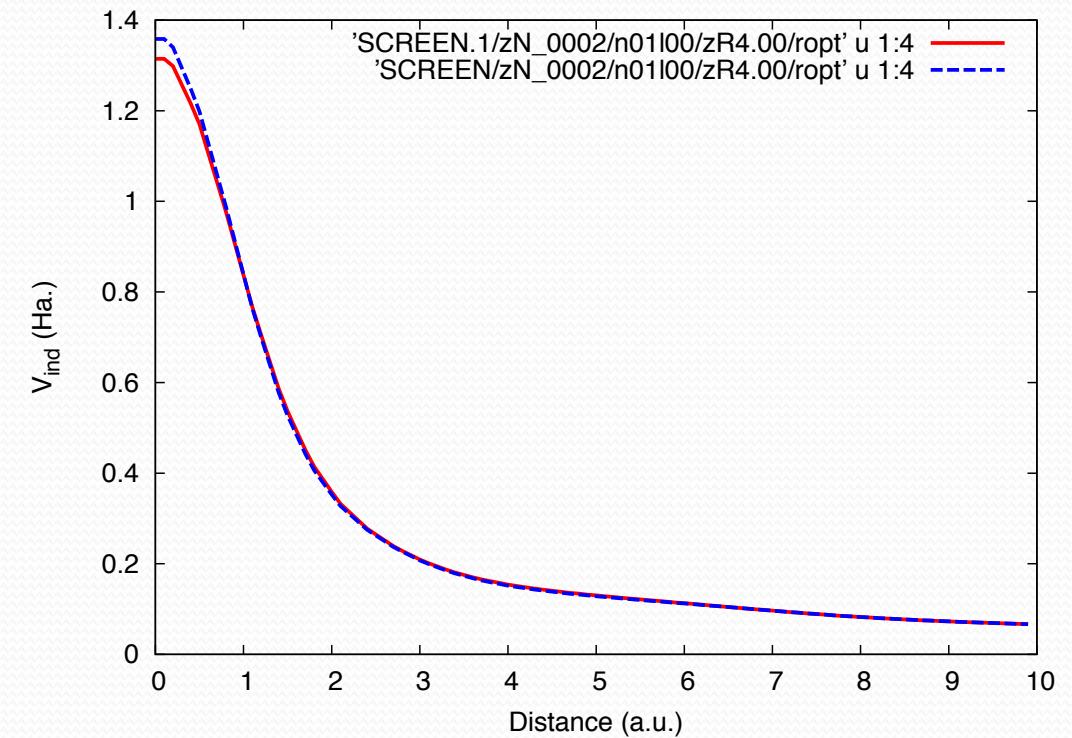
$$\chi_0(1, 2) = -iG_0(1, 2)G_0(2, 1^+)$$

$$G_0(E) = \sum_{n\mathbf{k}} \frac{\psi_{n\mathbf{k}}^\dagger \psi_{n\mathbf{k}}}{E - \varepsilon_{n\mathbf{k}} \pm i\eta}$$

- Use finite number of bands and k-points
- Remarkably few k-points
- Aim for about 100 eV worth of bands
- Re-run calculation to check
 - Which is what we just did

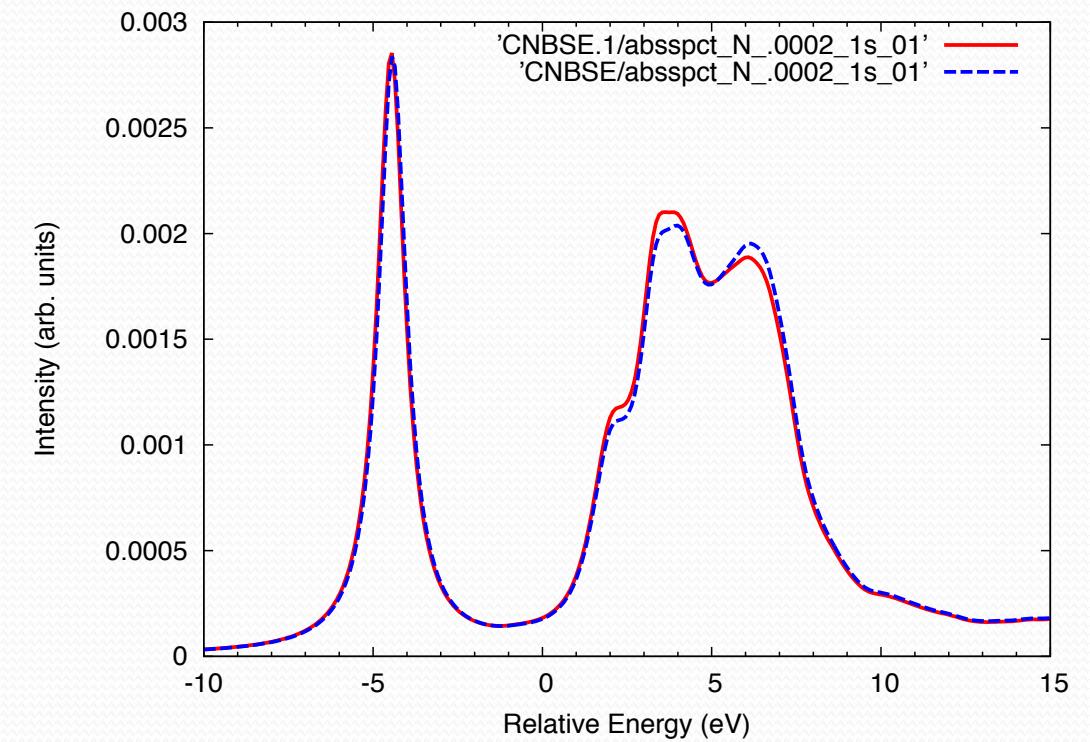
Converge the screening potential

- Plot the two potentials
 - > gnuplot
 - > plot 'SCREEN.1/zN_0002/n01l00/zR4.00/ropt' u 1:4 w l
 - > replot 'SCREEN/zN_0002/n01l00/zR4.00/ropt' u 1:4 w l
- Close
- More bands = more screening



Converge the screening potential

- Plot the spectra
 - CNBSE.1/absspct_N_.0002_1s_01
 - CNBSE/absspct_N_.0002_1s_01
- More screening
 - Less exciton binding
 - Spectral weight shifts higher
- Only slight changes
 - Probably close to converged



Converging the screening

- Short/long-range partitioning radius R
- Screened potential should be independent of R
 - Is ϵ_0^{-1} correct?
 - Is R large enough?
- Can run several radii
 - screen.shells { }
 - Bohr, rounded to 2 decimal places
 - Only 1 is used in BSE (cnbse.rad)

Core-level Shifts

Core-level (chemical) shifts

- First we'll kick off the next run
- Edit AN.in
- Change “calc xas” to “calc xes”
 - Absorption → Emission
- > sbatch runit
- I'll probably go too fast here, but slides will be available later

Core-level (chemical) shifts

- Core-level binding energies depend on chemical environment
 - Discovered in the 1920s by group of Manne Siegbahn
 - Foundation of XPS/ESCA
 - Correlate binding energy with oxidation state
- Previously (earlier sessions) showed relative energy
 - Spectral shape comparable to experiment
 - Absolute energy scale **offset** to match

Core-level (chemical) shifts

- How much fitting is acceptable?
- Relative shifts needed for most systems
 - Imperfect crystals
 - Vibrational disorder
 - Amorphous samples or liquids
 - Multiple oxidation states
 - Explicitly, e.g., NH_4NO_3
 - Surfaces or interfaces
- OCEAN needs 1 fit factor per edge & pseudopotential

Core-level (chemical) shifts

- OCEAN needs 1 fit factor per edge & pseudopotential
 - Ti 1s, Ti 2s, and Ti 2p → 3 different shifts
 - Good between Ti metal, TiO_2 , TiS_2 , or $\text{Li}_x\text{Ti}_y\text{O}_z$
- Works ok
 - Water: Phys Rev B **85**, 045101 (2012) & Nano Letters **17**, 1034 (2017)
 - Battery cathodes: J. Am. Chem. Soc. **139**, 16591 (2017)
 - NH_4NO_4 : Phys Rev B **90**, 205207 (2014); **94**, 035163 (2016)
 - Cu_2O surfaces: Chem Mater **30**, 1912 (2018)
- More benchmarks/stress tests are in progress

Core-level shifts with OCEAN

- Once again, no core orbitals with pseudopotential DFT
- DFT total energies for core orbitals are unreliable anyway

Core-level shifts with OCEAN

- Once again, no core orbitals with pseudopotential DFT
- DFT total energies for core orbitals are unreliable anyway

- 1) Assume the core orbital is independent of environment
 - Ti 1s is the same in metal as the oxide as the ...

Core-level shifts with OCEAN

- Once again, no core orbitals with pseudopotential DFT
- DFT total energies for core orbitals are unreliable anyway

1) Assume the core orbital is independent of environment

- Ti 1s is the same in metal as the oxide as the ...

2) Energy of orbital

- $\varepsilon_{1s} = \langle \psi_{1s} | \hat{H} | \psi_{1s} \rangle$
- $\varepsilon_{1s} = \langle \psi_{1s} | \hat{H}' | \psi_{1s} \rangle + \langle \psi_{1s} | \hat{v}_{\text{ext}} | \psi_{1s} \rangle$
- External is everything that changes, i.e., total Kohn-Sham potential
- $\varepsilon_{1s} = X_{1s} + \langle \psi_{1s} | \hat{v}_{\text{KS}} | \psi_{1s} \rangle$

Core-level shifts with OCEAN

- 1) Assume the core orbital is independent of environment
- 2) Energy of orbital: $\varepsilon_{1s} = X_{1s} + \langle \psi_{1s} | \hat{v}_{\text{KS}} | \psi_{1s} \rangle$
- 3) System relaxes/screens
 - Remove charge to infinity
 - $\Delta = 1/2W$
 - Depends on screened Coulomb

Core-level shifts with OCEAN

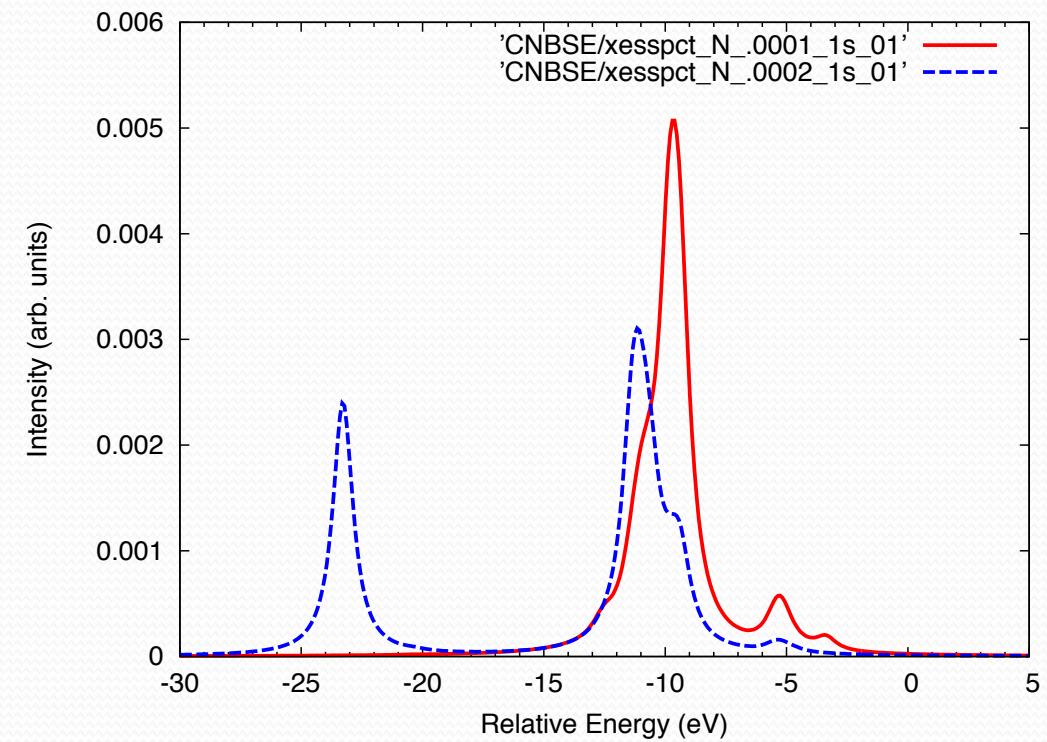
- 1) Assume the core orbital is independent of environment
- 2) Energy of orbital: $\varepsilon_{1s} = X_{1s} + \langle \psi_{1s} | \hat{v}_{\text{KS}} | \psi_{1s} \rangle$
- 3) System relaxes/screens
 - Remove charge to infinity
 - $\Delta = 1/2W$
 - Depends on screened Coulomb
- 4) Evaluate both terms at the atomic coordinate τ
 - Assuming the core orbital is small
 - $\Delta\varepsilon_{1s} = X_{1s} + \hat{v}_{\text{KS}}(\tau) - 1/2W(\tau)$

Core-level shifts with OCEAN

- $\Delta\varepsilon_{1s} = X_{1s} + \hat{v}_{\text{KS}}(\tau) - 1/2W(\tau)$
- Accurate enough to combine
 - Different molecular dynamics snapshots
 - Different chemical valences

XES of NH_4NO_3

- > gnuplot
- > p 'CNBSE/xesspct_N_.0001_1s_01'
- rep 'CNBSE/xesspct_N_.0002_1s_01'
- This assumes NO_3 and NH_4 have same N 1s binding energy
 - But one N is oxidized, one reduced
 - Need core-level shifts

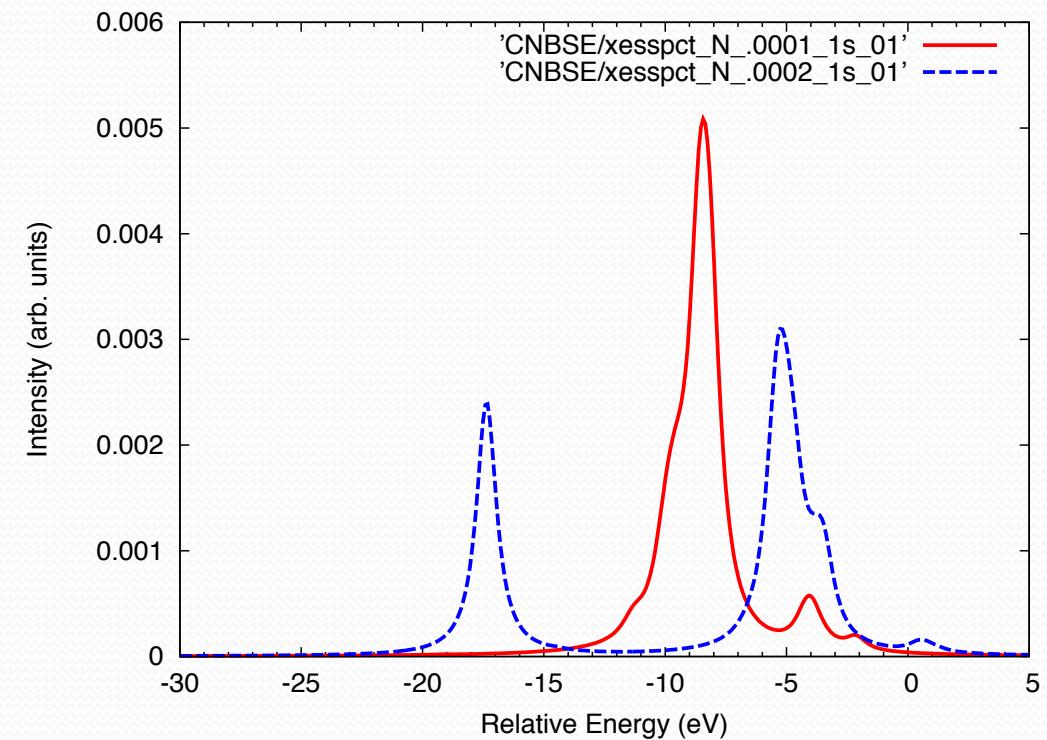


XES of NH_4NO_3

- Edit AN.in again
- Remove the '#' from in front of "core_offset .true."
 - A '#' is a comment
 - The code won't read anything that follows a '#'
- > sbatch runit

XES of NH_4NO_3

- > gnuplot
- > p 'CNBSE/xesspct_N_.0001_1s_01'
- rep 'CNBSE/xesspct_N_.0002_1s_01'
- Now the code calculates shifts
 - 4 eV shift between the two N's
 - Previously 0 eV was the conduction band minimum
 - Now it is the 0 of the DFT calculation



Core-level shifts with OCEAN

- 3 options for core_offset flag
 - .false. – Default, no shifts
 - .true. – Calculate an average shift of 0
 - Any number – Use this as X for calculating the shift
- Using a number for core_offset
 - Depends on pseudopotential and edge
 - Need to use to compare between cells
 - MD calculations
 - Chemical reactions

Core-level shifts with OCEAN

- Using a number for core_offset
 - Run **one** system with “core_offset .true.”
 - OCEAN will give you the number
- > less SCREEN/core_shift.log

```
Radius = 4.00 Bohr
core_offset was set to true. Now set to 120.254571918243
Site index      Total potential      New potential      1/2 Screening      core_offset      total offset
                  (eV)                (eV)                (eV)                (eV)                (eV)
      1      -137.711172094      -135.652088470      17.737967620      120.254571918      -2.3404511
      2      -143.388560093      -141.076373295      18.481350309      120.254571918      2.3404511
```

- Use “core_offset 120.25457” in subsequent runs