A Linear Response DFT + \(U(Fe) \) Study of the \(\alpha\)-Fe\(_2\)O\(_3\)(0001) Surface

Xu Huang, Sai Kumar Ramadugu, and Sara E. Mason

Department of Chemistry, University of Iowa, Iowa City IA 52242

May 15, 2015

Abstract

The surfaces of iron oxides are essential components to a wide range of environmental and technological processes such as contaminant adsorption and heterogeneous catalysis. However, even for the most stable and abundant iron oxides surface, hematite \(\alpha\)-Fe\(_2\)O\(_3\)(0001), our understanding of the phase diagram is incomplete. DFT modeling using an \emph{ab initio} thermodynamics framework [1] has the potential to provide insight on the preferred surface structure as a function of \(T \) and \(p \) conditions, but these strongly correlated materials pose challenges to the methodology. Various predictions for the (0001) surface phase diagram have been summarized in the literature [2] and note that supposedly improved calculations using GGA + \(U \) actually lead to worsened stability predictions. Herein, we aim to identify methods for reliable theoretical predictions for the surface phase diagrams of strongly correlated materials by studying the \(\alpha\)-Fe\(_2\)O\(_3\)(0001) surface. We focus on four terminations: -O3Fe, -O3Fe2, -Fe=O and -Fe2O3. Only the -O3Fe and -Fe2O3 terminations are reported experimentally, while GGA + \(U \) predicts the -Fe=O surface to be stable over a wide range of \(T \) and \(p_{O_2} \) conditions [3]. We use a linear response method to derive \(U \) values for chemically distinct Fe sites in each surface structure. We go on to show that this \(U(Fe) \) approach alone does not recover a realistic phase diagram. Further investigation shows that the hybridization between transition metal \(d \)- and oxygen \(p \)-orbital is strong enough to warrant an additional Coulomb correction, \(U^p \), to balance their repulsion effects. Our results show that a \(U(Fe) + U^p \) approach does yield a reasonable \(\alpha\)-Fe\(_2\)O\(_3\)(0001) phase diagram, as well as good predictions of the physical properties of hematite such as lattice constant, bulk modulus, and band gap. Finally, we demonstrate how the \(U(Fe) + U^p \) method impacts predictions for heterogeneous reactivity on the hematite surface.

References

